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Abstract

Artifacts can result when reconstructing a dynamic image sequence from inconsistent, as

well as insuÆcient and truncated, cone beam SPECT projection data acquired by a slowly

rotating gantry. The artifacts can lead to biases in kinetic model parameters estimated from

time-activity curves generated by overlaying volumes of interest on the images. However,

the biases in time-activity curve estimates and subsequent kinetic parameter estimates can

be reduced signi�cantly by �rst modeling the spatial and temporal distribution of the radio-

pharmaceutical throughout the projected �eld of view, and then estimating the time-activity

curves directly from the projections. This approach is potentially useful for clinical SPECT

studies involving slowly rotating gantries, particularly those using a single-detector system

or body contouring orbits with a multi-detector system.

We have implemented computationally eÆcient methods for fully 4-D direct estimation

of spatiotemporal distributions from dynamic cone beam SPECT projection data. Temporal

splines were used to model the time-activity curves for the blood pool and tissue volumes in

a simulated cardiac data acquisition. Least squares estimates of time-activity curves were

obtained quickly and accurately using a workstation. From these curves, kinetic parameters

were estimated accurately for noiseless data and with some bias for noisy data.

Keywords: dynamic SPECT, fully 4-D reconstruction, kinetic parameter estimation
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1 Introduction

Conventional analysis of dynamically acquired nuclear medicine data involves �tting kinetic

models to time-activity curves generated by overlaying volumes of interest on a temporal

sequence of reconstructed images. Since dynamic single photon emission computed tomog-

raphy (SPECT) data acquisition involves gantry motion (Figure 1) and the distribution of

radiopharmaceutical changes during the acquisition (Figure 2), projections at di�erent angles

come from di�erent tracer distributions. Images reconstructed from these inconsistent pro-

jections can contain artifacts that lead to biases in the estimated kinetic model parameters.

If the SPECT data are acquired using cone beam collimators wherein the gantry rotates so

that the focal point of the collimators always remains in a plane, additional biases can arise

from images reconstructed using insuÆcient, as well as truncated, projection samples.

To overcome these problems, we and others have been investigating the estimation of

time-activity curves and kinetic model parameters directly from dynamic SPECT projection

data by modeling the spatial and temporal distribution of the radiopharmaceutical through-

out the projected �eld of view [1]. This approach is potentially useful for clinical studies,

particularly in those clinics which have only single-detector SPECT systems and thus are

not able to perform rapid tomographic acquisitions. Even with a three-detector system,

a patient study that utilizes body contouring orbits can take 45{60 sec to obtain one full

tomographic acquisition. Thus, the estimation of time-activity curves and kinetic model pa-

rameters directly from projection data may also be useful for multi-detector SPECT systems

acquiring data with a slowly rotating gantry.

Building on research by Carson [2] and by Formiconi [3] into direct time-activity curve es-

timation for regions of interest, we have used simulated volumetric data to show that unbiased

kinetic parameter estimates for one-compartment models can be obtained directly from cone

beam and parallel beam SPECT projections, given the blood input function and the proper

segmentation of volumes encompassing the projected �eld of view [4,5]. We have also applied

these methods to a 99mTc-teboroxime patient study for which the blood input was estimated
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directly from the projections and the volumes of the left ventricular myocardium, blood pool,

liver, and background tissue were determined by automatically segmenting a dynamic im-

age sequence reconstructed from the inconsistent projection data [6]. Chiao et al [7, 8] have

jointly estimated spatial boundaries for myocardial regions of interest and kinetic param-

eters for one-compartment models from simulated single-slice transaxial positron emission

tomography (PET) projections, using a blood input function that was estimated from the

data. In addition to these methods based on segmented regions and volumes, a number of

researchers have reconstructed single-slice and multi-slice parametric images from SPECT

and PET data for a variety of kinetic models [9{13].

Here we present a study of the biases that result from modeling various orders of tem-

poral continuity when estimating time-activity curves directly from dynamic cone beam and

parallel beam SPECT projection data. Piecewise cubic, quadratic, linear, and constant

B-splines [14] are used to model the time-activity curves for the blood input, three myocar-

dial volumes of interest, liver, and background tissue in simulated data. Attenuation and

geometric point response are modeled, but scatter is not. Segmented volumes encompassing

the projected �eld of view are modeled to contain spatially uniform activity concentrations.

Computationally eÆcient methods are developed which extend Formiconi's least squares al-

gorithm [3] so that fully four-dimensional (4-D) direct spatiotemporal distribution estimation

from projections can be performed on a workstation with a modest amount of memory. Using

a Monte Carlo simulation, we study also the e�ects of noisy projections on kinetic parameter

estimates for one-compartment models obtained from the spline time-activity curves for the

blood input function and the myocardial and liver volumes.

The methodology presented here builds on the work of Chen et al [15], in which a spline

�t to the blood input function and kinetic parameters for a compartmental model were

jointly estimated from time-activity curves generated by overlaying regions of interest on a

simulated temporal sequence of reconstructed PET images. Nichols et al [16] have also used

splines to model the time course of activity in volume elements (voxels) reconstructed from
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dynamic list mode PET data.

The methodology presented here facilitates future research into the joint estimation of the

blood input function and kinetic parameters for compartmental models directly from pro-

jection data, as well as the parameterization of spatially nonuniform activity concentrations

within segmented volumes encompassing the projected �eld of view.

2 Computationally EÆcient Estimation of Spatiotem-

poral Distributions Directly from Projections

Time varying activity concentrations within volumes of interest encompassing the projected

�eld of view can be modeled by selecting a set of temporal basis functions capable of rep-

resenting typical time variations and having desired smoothness properties. Similarly, the

spatially nonuniform activity concentration within a particular volume can be modeled by

selecting an appropriate set of spatial basis functions de�ned within the volume. Given a set

of temporal basis functions and sets of spatial basis functions for the volumes, coeÆcients for

the resulting spatiotemporal basis functions can be estimated directly from the projections

as follows.

The projection of the mth spatial basis function along ray i at angle j is denoted by umij ,

and the integral of the nth temporal basis function during the time interval associated with

angle j of rotation k is denoted by vnjk. The projection equations can be expressed as

pijk =

MX
m=1

NX
n=1

amnu
m
ijv

n
jk; (1)

where M is the number of spatial basis functions and N is the number of temporal basis

functions. The criterion which is minimized by varying the linear coeÆcients amn associated

with the time integrals of the projections of the spatiotemporal basis functions is the weighted
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sum of squares function

�2 =

IX
i=1

JX
j=1

KX
k=1

(p�ijk � pijk)
2

Wijk

; (2)

where the p�ijk are the measured projections, the Wijk are weighting factors, I is the number

of projection rays per angle, J is the number of angles per rotation, and K is the number

of rotations. Typically, the weighting factors are either unity for an unweighted �t or the

estimated variances of the projections for a weighted �t.

Equations (1) and (2) can be rewritten in matrix form as

p = Fa (3)

and

�2 = (p� � Fa)TW(p� � Fa); (4)

respectively, where p is an IJK element column vector whose [i + (j � 1)I + (k � 1)IJ ]th

element is pijk, F is an IJK�MN matrix whose f[i+(j�1)I+(k�1)IJ ]; [m+(n�1)M ]gth

element is umijv
n
jk, a is anMN element column vector whose [m+(n�1)M ]th element is amn,

p� is an IJK element column vector whose [i + (j � 1)I + (k � 1)IJ ]th element is p�ijk, and

W is an IJK � IJK diagonal matrix whose [i + (j � 1)I + (k � 1)IJ ]th diagonal element

is 1=Wijk. The criterion, �2, is minimized by the vector of spatiotemporal basis function

coeÆcients

â = (FTWF)�1FTWp�: (5)

The covariance matrix for the coeÆcients â is

cov(â) = (FTWF)�1FTWcov(p�)WF(FTWF)�1; (6)

where cov(p�) is the covariance matrix for the measured projections. Given an estimate of

cov(p�), estimates of the statistical uncertainties of the coeÆcients â are the square roots of

the diagonal elements of the covariance matrix given by equation (6).
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Storing the entire matrix F and calculating the symmetric matrix FTWF using straight-

forward matrix multiplication is computationally ineÆcient. For example, over 3.6 million

projection samples result from a 15 minute dynamic SPECT study such as that simulated in

Section 3, in which data are acquired for 64 transverse � 32 axial rays per angle (I = 2048),

J = 120 angles per rotation, and one rotation per minute (K = 15). Fully 4-D direct spa-

tiotemporal distribution estimation using 96 basis functions composed from M = 6 spatial

and N = 16 temporal basis functions, such as are used in the simulation described in Sec-

tion 3, involves a matrix F containing IJKMN � 350 million elements. For an unweighted

least squares reconstruction of the spatiotemporal basis function coeÆcients â (i.e., forW an

identity matrix), calculating the symmetric matrix FTF using straightforward matrix multi-

plication requires IJKMN(MN + 1)=2 � 17 billion multiply-and-add operations, given F.

This computational burden is nontrivial for workstation-class computers and grows worse

quickly as either the numberM of spatial basis functions or the number N of temporal basis

functions increases.

The burden of storing the matrix F can be reduced signi�cantly by storing instead the

spatial basis projection factors umij and the temporal basis integral factors vnjk and calculating

the elements of F as needed. For IJM � JKN , this reduces memory usage by a factor

of about KN . For the example above with fI; J;K;M;Ng = f2048; 120; 15; 6; 16g, this

requires storage of only IJM � 1:5 million umij factors and JKN � 29 thousand vnjk factors

and reduces memory usage by a factor of about 230.

For an unweighted least squares reconstruction of the spatiotemporal basis function co-

eÆcients â (i.e., for W an identity matrix), the symmetric MN �MN matrix FTF can be

calculated more eÆciently as follows. Denoting the f[m + (n � 1)M ]; [m0 + (n0 � 1)M ]gth

element of FTF by �mnm
0n0

, one has

�mnm
0n0

=

IX
i=1

JX
j=1

KX
k=1

umijv
n
jku

m0

ij v
n0

jk: (7)
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Rearranging the summations yields

�mnm
0n0

=

JX
j=1

"
IX
i=1

umiju
m0

ij

#"
KX
k=1

vnjkv
n0

jk

#
=

JX
j=1

�mm
0

j �nn
0

j ; (8)

where �mm
0

j and �nn
0

j denote the inner products
PI

i=1 u
m
iju

m0

ij and
PK

k=1 v
n
jkv

n0

jk, respectively.

The number of �mm
0

j factors is JM(M +1)=2, the number of �nn
0

j factors is JN(N +1)=2,

and the number of �mnm
0n0

factors is MN(MN + 1)=2. It takes I multiply-and-add oper-

ations to calculate each �mm
0

j factor and K multiply-and-add operations to calculate each

�nn
0

j factor. Given the �mm
0

j and �nn
0

j factors, it takes J multiply-and-adds to calculate each

of the �mnm
0n0

factors. Thus, the �mnm
0n0

can be calculated using just J [IM(M + 1) +

KN(N + 1) +MN(MN + 1)]=2 multiply-and-adds. For I � N2 and K < M2, this re-

duces the number of operations by a factor of about KN2. For the example above with

fI; J;K;M;Ng = f2048; 120; 15; 6; 16g, this computationally eÆcient calculation of FTF

requires storage of about 19 thousand �mm
0

j and �nn
0

j factors and about 6 million multiply-

and-add operations, which is a factor of about 2800 less than that required for straightfor-

ward matrix multiplication. For the simulation described in Section 3, this computationally

eÆcient calculation took about 2.2 sec.

Having addressed the major issues of storing F and calculating FTF, the next compu-

tational hurdle is calculating FTp�. This can be done in (I + 1)JKMN multiply-and-add

operations, given the umij and v
n
jk factors. The system of equations FTFâ = FTp� can then

be solved eÆciently for the spatiotemporal basis function coeÆcients â using the Cholesky

decomposition of FTF [17].

An estimate of the covariance matrix for the unweighted least squares estimates â can

be calculated in the following computationally eÆcient manner. Given an estimate P̂ of the

covariance matrix for the measured projections and substituting the identity matrix for W

in equation (6), one obtains

cov(â) = (FTF)�1FTP̂F(FTF)�1: (9)
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Inverting the symmetric MN �MN matrix FTF is straightforward, given its Cholesky de-

composition. Taking the measured projections to be independent Poisson random variables,

an estimate P̂ of their covariance matrix is the IJK � IJK diagonal matrix having the

estimated projection vector p̂ = Fâ along the diagonal. Denoting the f[m+(n�1)M ]; [m0+

(n0 � 1)M ]gth element of the symmetric MN �MN matrix FTP̂F by  mnm
0n0

, one has

 mnm
0n0

=

IX
i=1

JX
j=1

KX
k=1

umijv
n
jkp̂ijku

m0

ij v
n0

jk; (10)

where p̂ijk is the [i + (j � 1)I + (k � 1)IJ ]th element of the estimated projection vector p̂.

Rearranging the summations yields

 mnm
0n0

=

JX
j=1

KX
k=1

"
IX
i=1

umij p̂ijku
m0

ij

#
vnjkv

n0

jk =

JX
j=1

KX
k=1

!mm
0

jk vnjkv
n0

jk; (11)

where !mm
0

jk denotes the weighted inner product
PI

i=1 u
m
ij p̂ijku

m0

ij .

The number of !mm
0

jk factors is JKM(M + 1)=2 and the number of  mnm
0n0

factors

is MN(MN + 1)=2. Given the p̂ijk, it takes 2I multiply operations and I add operations to

calculate each !mm
0

jk factor. Given the !mm
0

jk factors, it takes 2JK multiplies and JK adds

to calculate each of the  mnm
0n0

factors. Thus, the  mnm
0n0

can be calculated using just

JK[IM(M + 1)+MN(MN+1)] multiply operations and half that number of add operations.

Compared to the computationally eÆcient calculation of FTF, this calculation of FTP̂F

requires about 2K times more multiply-and-adds and about K times more memory, given

P̂. For the case where P̂ is the diagonal matrix having the estimated projection vector

p̂ = Fâ along the diagonal, calculating P̂ takes 2IJKMN multiplies and half that number

of adds, which is about 2N=(M +1) times more operations than needed to calculate FTP̂F.

Thus, given a calculation time of about 2.2 sec for FTF and K = 15 rotations, such as in

the simulation described in Section 3, calculation of FTP̂F should take about 1 min. For

M = 6 spatial basis functions and N = 16 temporal basis functions, calculation of P̂ should

take about 5 min.

For a weighted least squares reconstruction of the spatiotemporal basis function coeÆ-

cients â (i.e., for W�1 = cov(p�) in equations (5) and (6)), calculating FTWF takes the
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same amount of computation as calculating FTP̂F. Thus, for dynamic SPECT projection

data acquired with a relatively small number of rotations K, it appears that with these

methods a workstation with a modest amount of memory can be used to perform a weighted

least squares reconstruction of the spatiotemporal basis function coeÆcients â, as well as to

obtain an estimate of the covariance matrix for the coeÆcients, in a reasonable amount of

time. These methods are easily parallelized, and additional savings in computation can be

realized by taking advantage of the sparsity of nonzero spatial basis projection factors umij

and nonzero temporal basis integral factors vnjk.

3 Computer Simulations

The Mathematical Cardiac Torso (MCAT) phantom [18], developed by the University of

North Carolina Medical Imaging Research Laboratory, was used in a simulation to evaluate

the ability to estimate spatiotemporal distributions directly from dynamic cone beam and

parallel beam SPECT projections using unweighted least squares. Kinetic parameters for

one-compartment models (Figure 2) were estimated from the resulting spatiotemporal dis-

tributions, as well. The MCAT emission phantom (Figure 3a) contained three myocardial

volumes of interest (normal myocardium, septal defect, and lateral defect), blood pool, liver,

and background tissue. The myocardial defects were de�ned as the intersection of 3 cm

diameter spheres with the septal and lateral walls of the left ventricle. Cone beam and par-

allel beam projections were attenuated using the corresponding MCAT attenuation phantom

(Figure 3b).

The simulated time-activity curves for the six emission volumes are shown in Figure 4.

The time-activity curves for the three myocardial volumes of interest and the liver were

generated by using the blood pool curve as the input to one-compartment models having

kinetics corresponding to those of teboroxime [19{21]. The background tissue activity was

proportional to the blood pool activity.
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The simulated 15 minute data acquisition consisted of 64 transverse � 32 axial rays per

angle (I = 2048), J = 120 angles per rotation, and one rotation per minute (K = 15) of

a single-detector system. The projection bins were 7 mm � 7 mm at the detector for both

the cone beam and parallel beam geometries, and the detector was 30 cm from the center

of the �eld of view. The collimators had a hole diameter of 2 mm, a length of 4 cm, and

were o�set 1 cm from the detector. The cone beam collimators had a focal length of 70 cm.

Attenuation and geometric point response were modeled using a ray-driven projector with

line length weighting [22]. Scatter was not modeled.

3.1 Spatiotemporal Distribution Estimates

The spatial basis functions were de�ned using the known segmentation of the six emission

volumes composing the MCAT phantom (Figure 3a). Each emission volume was modeled to

contain spatially uniform activity, which yielded M = 6 spatial basis functions.

The temporal basis functions consisted of N = 16 splines spanning 15 time segments

having geometrically increasing length (Figure 5). Piecewise cubic, quadratic, linear, and

constant B-splines were used with initial time segment lengths ranging between 2.5{60 sec.

The shorter initial time segment lengths provided a higher density of temporal spline basis

functions at the beginning of the simulated acquisition, when the activity concentrations

were changing most rapidly (Figure 4). The 60 sec initial time segment length provided

basis functions spaced uniformly in time. The cubic, quadratic, and linear B-splines allow

modeling of curves that are continuous through their second, �rst, and zeroth derivative,

respectively.

The computational bene�ts of factoring the matrix F into the spatial basis projection

factors umij and the temporal basis integral factors vnjk were evident in the simulation. Rather

than storing its more than 350 million elements, about 1.5 million umij and v
n
jk factors were

stored instead. The number of multiply-and-adds used to calculate FTF was reduced from

over 17 billion to less than 6 million. A set of time-activity curves was estimated directly
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from the 3.7 million simulated projection samples in about 2.3 min on a 194 MHz MIPS

R10000-based Silicon Graphics workstation. The calculations of FTF and FTp� took about

2.2 sec and 2.2 min, respectively.

Figure 6 depicts the root mean square (RMS) di�erences between the simulated time-

activity curves and the spline curves estimated directly from noiseless projections, normalized

by the RMS values of the simulated curves and expressed as percentages. The temporal spline

modeling errors were largest for the septal and lateral defects, which had relatively small

spatial supports (Figure 3a) and low activity concentrations (Figure 4). Intermediate errors

resulted for the blood pool and background, which had larger spatial supports but quickly

decaying activity concentrations. The errors were smallest for the normal myocardium and

liver, which had larger spatial supports and high activity concentrations throughout the

simulated data acquisition. The errors tended to increase as the length of the initial time

segment for the splines increased.

In most cases the temporal spline modeling errors for the three myocardial volumes of

interest and the blood pool were smaller for the cone beam geometry than for the parallel

beam geometry, due to the increased relative sensitivity to those volumes provided by the

cone beam sampling. Errors for the background tissue were comparable for both geome-

tries, while in most cases the errors for the liver were larger for the cone beam geometry.

For the cone beam geometry and the relatively rapid initial sampling provided by using

initial time segment lengths of 2.5, 5, or 10 sec, the errors for all six volumes ranged be-

tween 0.020{3.8%, 0.022{1.7%, 0.090{6.2%, and 1.6{64% for the cubic, quadratic, linear,

and constant B-splines, respectively. The corresponding ranges of errors for the parallel

beam geometry were 0.020{4.9%, 0.022{2.7%, 0.089{6.8%, and 1.6{62%. For the cone beam

geometry and the uniform time sampling provided by using an initial time segment length

of 60 sec, the errors ranged between 0.45{50%, 0.48{53%, 0.65{60%, and 4.0{110% for the

cubic, quadratic, linear, and constant B-splines, respectively. The corresponding ranges of

errors for the parallel beam geometry were 0.37{69%, 0.41{73%, 0.58{83%, and 4.0{140%.
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3.2 Kinetic Parameter Estimates

Of interest is how the temporal spline modeling errors bias the estimates of kinetic parameters

obtained from the directly estimated time-activity curves. To study this we used the program

RFIT [23{25] to �t one-compartment kinetic models to the directly estimated time-activity

curves for the three myocardial volumes of interest and the liver, using the directly estimated

blood pool curve as the input function. The background tissue activity was modeled to be

proportional to the blood pool activity, and its amplitude was also estimated.

For the one-compartment kinetic model (Figure 2), the uptake in tissue volume m is

Qm(t) = km21

Z t

0

B(�)e�k
m

12
(t��)d� = km21V

m(t); (12)

where B(t) is the blood input function, km21 is the uptake parameter, and km12 is the washout

parameter. Total activity in the tissue is given by

Qm(t) + fmv B(t) = km21V
m(t) + fmv B(t); (13)

where fmv is the fraction of vasculature in the tissue. To �t one-compartment models for

the normal myocardium, septal defect, lateral defect, and liver (denoted by indices m = 1,

2, 3, and 4, respectively), RFIT varies the parameters km21, k
m
12, and fmv to minimize the

unweighted sum of squares function

�2m =

JX
j=1

KX
k=1

(
NX
n=1

âmnv
n
jk �

Z tjk

tjk��t

[km21V̂
m(�) + fmv B̂(�)]d�

)2

; (14)

where the âmn are given by equation (5), v
n
jk is the integral of the n

th temporal basis function

during the time interval [tjk � �t; tjk] in which projection data are acquired at angle j of

rotation k, V̂ m(�) is the convolution
R �
0
B̂(� 0)e�k

m

12
(��� 0)d� 0, and B̂(�) is derived from the

directly estimated blood pool time-activity curve (denoted by indexm = 6) as follows. Given

the set of time integrals, f
PN

n=1 â6nv
n
jk; j = 1; : : : ; J ; k = 1; : : : ; Kg, of the directly estimated

blood pool curve, RFIT models B̂(�) as a piecewise linear function which interpolates zero at

time � = 0; the value
PN

n=1 â6nv
n
jk=�t at time tjk�(�t=2), for j = 1; : : : ; J and k = 1; : : : ; K;

and the value
PN

n=1 â6nv
n
JK=�t at time tJK.
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The amplitude, g, of the background tissue (denoted by index m = 5) is estimated by

minimizing the unweighted sum of squares function

�25 =

JX
j=1

KX
k=1

(
NX
n=1

â5nv
n
jk �

Z tjk

tjk��t

gB̂(�)d�

)2

: (15)

Figures 7, 8, and 9 show the kinetic parameter estimates obtained from the spline models

for time-activity curves estimated directly from noiseless projections. The biases in the

uptake parameters km21 and the washout parameters km12 were particularly small when using

quadratic B-splines and initial time segment lengths of 2.5, 5, or 10 sec (Figures 7b and 8b).

For these three sets of basis functions, the biases ranged between 0.0{1.0% for the cone beam

geometry and 0.0{1.4% for the parallel beam geometry.

To study the e�ects of noisy projections on kinetic parameter estimates obtained from

spline time-activity curves, 100 realizations of projections having Poisson noise were gener-

ated for both the cone beam and parallel beam geometries. The amplitude of the simulated

blood input function was adjusted so that about 10 million events were detected using the

cone beam collimators. With this same blood input function, about 6.4 million events were

detected using the parallel beam collimators. Quadratic B-splines and an initial time seg-

ment length of 10 sec were used to model the time-activity curves. A two-tailed t test [26]

was used to assess the biases in the sample means of the kinetic parameter estimates.

Figures 10, 11, and 12 show the time-activity curves estimated for the blood pool and the

three myocardial volumes of interest, for the �rst three noisy realizations. For both the cone

beam and parallel beam geometries, the di�erences between the spline time-activity curves

estimated directly from noiseless and noisy projections are relatively small, for the blood

pool and the normal myocardium. For the septal and lateral defects, the di�erences between

the spline curves estimated directly from noiseless and noisy projections are relatively large.

Noise in the spline curve coeÆcients generates extended excursions (dotted lines) above

and below the noiseless spline curves (solid lines). The curves associated with the one-

compartment kinetic model �ts to the noisy spline curves provide smoother approximations
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(dashed lines) to the noiseless spline curves. In all cases, the noiseless spline curves provide

relatively good �ts to the samples of the simulated curves.

Summaries of the results for all 100 noisy realizations are presented in Tables 1 and 2, for

both the cone beam and parallel beam geometries. For the cone beam geometry (Table 1), the

sample means (column (f)) of the uptake parameters km21 and the washout parameters km12

for the normal myocardium and the liver did not di�er signi�cantly from the simulated

values (P > 0:4). The sample standard deviations (column (g)) ranged between 0.5{20%.

The sample means of the uptake and washout parameters for the septal and lateral defects

were signi�cantly di�erent from the simulated values (P < 0:05). The di�erences between

the sample means and the simulated values for the defects ranged between 4.8{16%. The

sample standard deviations ranged between 22{42%.

For the parallel beam geometry (Table 2), the sample means (column (f)) of the uptake

parameters km21 for the normal myocardium and the liver did not di�er signi�cantly from

the simulated values (P > 0:05). The sample means of the washout parameters km12 were

signi�cantly di�erent from the simulated values (P < 0:03), although the di�erence was

only 0.7% for the normal myocardium. The di�erence for the liver washout was 10%. The

sample standard deviations (column (g)) ranged between 0.9{40%. The sample means of the

uptake and washout parameters for the septal and lateral defects were signi�cantly di�erent

from the simulated values (P < 0:03). The di�erences between the sample means and the

simulated values for the defects ranged between 11{39%. The sample standard deviations

ranged between 40{140%.

4 Discussion

The combination of gantry motion and the time-variation of the radiopharmaceutical dis-

tribution being imaged results in inconsistent dynamic SPECT projection data sets. In

addition, the use of cone beam collimators can result in insuÆcient, as well as truncated, pro-
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jection samples. Conventional kinetic model parameter estimation from time-activity curves

generated by overlaying volumes of interest on images reconstructed from these projection

data results in biases. The biases in the time-activity curve estimates and the subsequent ki-

netic model parameter estimates can be reduced signi�cantly by estimating the time-activity

curves directly from the projections. Implementation of this strategy requires a spatial and

temporal model of the radiopharmaceutical distribution throughout the projected �eld of

view.

Computational issues associated with fully 4-D direct estimation of spatiotemporal dis-

tributions from dynamic cone beam SPECT projection data have been addressed, so that

least squares estimates of time-activity curves can be obtained quickly and accurately using

a workstation with a modest amount of memory. Temporal B-splines were used to model

the time-activity curves for the blood pool and tissue volumes in a simulated cardiac data

acquisition. From these curves, kinetic parameters for compartmental models were estimated

accurately for noiseless data and with some bias for noisy data.

The estimation of time-activity curves and kinetic model parameters directly from projec-

tion data is potentially useful for clinical SPECT studies involving slowly rotating gantries,

particularly those which use a single-detector system or body contouring orbits with a multi-

detector system. The methodology presented here facilitates future research into the joint

estimation of the blood input function and kinetic parameters for compartmental models di-

rectly from projection data, as well as the parameterization of spatially nonuniform activity

concentrations within segmented volumes encompassing the projected �eld of view.
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cone beam

simulated noiseless noisy �ts (n = 100) sample sample

�t 1st 2nd 3rd mean std dev

(a) (b) (c) (d) (e) (f) (g)

k
1
21 0.700 0.700 0.697 0.697 0.707 0.700 0.0064

normal myocardium k
1
12 0.150 0.150 0.151 0.152 0.152 0.150 0.0016

f
1
v 0.150 0.150 0.149 0.130 0.144 0.150 0.011

k
2
21 0.300 0.300 0.299 0.393 0.266 0.314* 0.072

septal defect k
2
12 0.300 0.300 0.307 0.361 0.249 0.317* 0.066

f
2
v 0.100 0.102 0.139 0.015 -0.062 0.095 0.12

k
3
21 0.500 0.502 0.628 0.569 0.713 0.578* 0.21

lateral defect k
3
12 0.600 0.603 0.727 0.595 0.802 0.653* 0.16

f
3
v 0.100 0.096 0.246 -0.044 -0.034 0.064* 0.17

k
4
21 0.900 0.900 0.901 0.893 0.903 0.900 0.0046

liver k
4
12 0.0020 0.0020 0.0029 0.0025 0.0026 0.0020 0.0004

f
4
v 0.200 0.201 0.197 0.196 0.191 0.201 0.0047

background g 0.200 0.200 0.199 0.197 0.200 0.200 0.0010

Table 1: One-compartment kinetic model parameters (Figure 2) obtained from time-activity curves

estimated directly from cone beam projections using temporal quadratic B-spline basis functions

and an initial time segment length of 10 sec (Figure 5b): (a) simulated kinetic parameter values;

(b) values from noiseless projections; (c), (d), and (e) values from the �rst three of 100 realizations

of projections having Poisson noise (Figures 10, 11, and 12); (f) sample means for the 100 noisy

realizations; (g) sample standard deviations for the 100 noisy realizations. Units for uptake km21 and

washout km12 are min�1. The vascular fraction f
m
v and background amplitude g are dimensionless.

Sample means that were signi�cantly di�erent from the simulated values (i.e., P < 0:05 for a

two-tailed t test) are labeled with asterisks. Using the cone beam collimators, about 10 million

events were detected for each noisy realization.
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parallel beam

simulated noiseless noisy �ts (n = 100) sample sample

�t 1st 2nd 3rd mean std dev

(a) (b) (c) (d) (e) (f) (g)

k
1
21 0.700 0.700 0.698 0.680 0.693 0.702 0.010

normal myocardium k
1
12 0.150 0.150 0.148 0.149 0.148 0.151* 0.0031

f
1
v 0.150 0.151 0.148 0.188 0.199 0.149 0.025

k
2
21 0.300 0.301 0.322 0.278 0.361 0.337* 0.16

septal defect k
2
12 0.300 0.301 0.397 0.257 0.413 0.333* 0.12

f
2
v 0.100 0.100 -0.094 0.202 -0.111 0.086 0.24

k
3
21 0.500 0.507 1.102 0.783 0.707 0.694* 0.68

lateral defect k
3
12 0.600 0.607 0.954 0.626 0.601 0.692* 0.40

f
3
v 0.100 0.092 -0.276 -0.435 -0.222 0.059 0.33

k
4
21 0.900 0.900 0.894 0.893 0.904 0.901 0.0082

liver k
4
12 0.0020 0.0020 0.0014 0.0023 0.0016 0.0022* 0.0008

f
4
v 0.200 0.201 0.198 0.209 0.205 0.201 0.0081

background g 0.200 0.200 0.198 0.199 0.202 0.200 0.0019

Table 2: One-compartment kinetic model parameters (Figure 2) obtained from time-activity curves

estimated directly from parallel beam projections using temporal quadratic B-spline basis functions

and an initial time segment length of 10 sec (Figure 5b): (a) simulated kinetic parameter values;

(b) values from noiseless projections; (c), (d), and (e) values from the �rst three of 100 realizations

of projections having Poisson noise (Figures 10, 11, and 12); (f) sample means for the 100 noisy

realizations; (g) sample standard deviations for the 100 noisy realizations. Units for uptake km21 and

washout km12 are min�1. The vascular fraction f
m
v and background amplitude g are dimensionless.

Sample means that were signi�cantly di�erent from the simulated values (i.e., P < 0:05 for a

two-tailed t test) are labeled with asterisks. Using the parallel beam collimators, about 6.4 million

events were detected for each noisy realization.
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Figure 1: Cone beam SPECT scanner. The detector rotates about the patient (not shown) so that

the focal point remains in a plane perpendicular to the long axis of the patient's body.
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B(t)

km21

km12

Qm(t)

Figure 2: Compartmental model for 99mTc-teboroxime in the myocardium. B(t) is the blood input

function, Qm(t) is the tracer in tissue volume m, and km21 and k
m
12 are the rate constants for uptake

and washout, respectively.
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(a) MCAT emission phantom.

(b) MCAT attenuation phantom.

Figure 3: Transverse cross sections through (a) the MCAT emission phantom and (b) the MCAT

attenuation phantom.
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Figure 4: Simulated time-activity curves for the volumes shown in Figure 3a.
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(c) Linear B-spline temporal basis functions.
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(d) Constant B-spline temporal basis functions.

Figure 5: Examples of piecewise cubic (a), quadratic (b), linear (c), and constant (d) B-spline

temporal basis functions used to model time-activity curves estimated directly from projections.

Sixteen splines (shown with various line patterns) were used to span 15 time segments having

geometrically increasing length. The initial time segment length for the splines shown here is

10 sec, and the subsequent 14 time segments have lengths of about 12 sec, 15 sec, 18 sec, 23 sec,

28 sec, 34 sec, 42 sec, 51 sec, 1.0 min, 1.3 min, 1.6 min, 1.9 min, 2.4 min, and 2.9 min. The splines

sum to one at each time point. The cubic, quadratic, and linear B-splines allow modeling of curves

that are continuous through their second, �rst, and zeroth derivative, respectively.
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Figure 6: Root mean square (RMS) errors for time-activity curves estimated directly from sim-

ulated noiseless cone beam (left) and parallel beam (right) projections, using piecewise cubic (a),

quadratic (b), linear (c), and constant (d) B-spline temporal basis functions (Figure 5) and initial

time segment lengths ranging between 2.5{60 sec. The di�erences between the simulated time-

activity curves (Figure 4) and the spline curves estimated directly from noiseless projections (e.g.,

the solid curves in Figure 10) are normalized by the RMS values of the simulated curves and ex-

pressed as percentages. The errors tend to increase as the length of the initial time segment for the

splines increases.
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Figure 7: Uptake parameters km21 (Figure 2) obtained from time-activity curves estimated directly

from simulated noiseless cone beam (left) and parallel beam (right) projections, using piecewise

cubic (a), quadratic (b), linear (c), and constant (d) B-spline temporal basis functions (Figure 5)

and initial time segment lengths ranging between 2.5{60 sec. Units for uptake k
m
21 are min�1.

The simulated values are depicted by the dotted horizontal lines and listed in the �gure legends.

The biases are particularly small when using quadratic B-splines and initial time segment lengths

of 2.5, 5, or 10 sec. The results for quadratic B-splines and an initial time segment length of 10 sec

are listed in column (b) of Tables 1 and 2.
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Figure 8: Washout parameters km12 (Figure 2) obtained from time-activity curves estimated directly

from simulated noiseless cone beam (left) and parallel beam (right) projections, using piecewise

cubic (a), quadratic (b), linear (c), and constant (d) B-spline temporal basis functions (Figure 5)

and initial time segment lengths ranging between 2.5{60 sec. Units for washout km12 are min�1.

The simulated values are depicted by the dotted horizontal lines and listed in the �gure legends.

The biases are particularly small when using quadratic B-splines and initial time segment lengths

of 2.5, 5, or 10 sec. The results for quadratic B-splines and an initial time segment length of 10 sec

are listed in column (b) of Tables 1 and 2.
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Figure 9: Background amplitude g and vascular fraction f
m
v parameters obtained from time-

activity curves estimated directly from simulated noiseless cone beam (left) and parallel beam

(right) projections, using piecewise cubic (a), quadratic (b), linear (c), and constant (d) B-spline

temporal basis functions (Figure 5) and initial time segment lengths ranging between 2.5{60 sec.

The amplitude g and fraction f
m
v are dimensionless. The simulated values are depicted by the

dotted horizontal lines and listed in the �gure legends. The biases are particularly small when

using quadratic B-splines and initial time segment lengths of 2.5, 5, or 10 sec. The results for

quadratic B-splines and an initial time segment length of 10 sec are listed in column (b) of Tables 1

and 2.
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Figure 10: First of 100 noisy realizations: time-activity curves for (a) the blood pool, (b) the

normal myocardium, (c) the septal defect, and (d) the lateral defect, estimated directly from simu-

lated cone beam (left) and parallel beam (right) projections using temporal quadratic B-spline basis

functions and an initial time segment length of 10 sec (Figure 5b). Samples of the simulated curves

(Figure 4) are shown as points. The solid curves were estimated from noiseless projections, and

the dotted curves were estimated from the �rst of 100 realizations of projections having Poisson

noise. The dashed curves in (b), (c), and (d) are the one-compartment kinetic �ts (Figure 2) to

the noisy curves. The �tted kinetic model parameters are listed in column (c) of Tables 1 and 2.
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Figure 11: Second of 100 noisy realizations: time-activity curves for (a) the blood pool, (b) the

normal myocardium, (c) the septal defect, and (d) the lateral defect, estimated directly from simu-

lated cone beam (left) and parallel beam (right) projections using temporal quadratic B-spline basis

functions and an initial time segment length of 10 sec (Figure 5b). Samples of the simulated curves

(Figure 4) are shown as points. The solid curves were estimated from noiseless projections, and

the dotted curves were estimated from the second of 100 realizations of projections having Poisson

noise. The dashed curves in (b), (c), and (d) are the one-compartment kinetic �ts (Figure 2) to

the noisy curves. The �tted kinetic model parameters are listed in column (d) of Tables 1 and 2.
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Figure 12: Third of 100 noisy realizations: time-activity curves for (a) the blood pool, (b) the

normal myocardium, (c) the septal defect, and (d) the lateral defect, estimated directly from simu-

lated cone beam (left) and parallel beam (right) projections using temporal quadratic B-spline basis

functions and an initial time segment length of 10 sec (Figure 5b). Samples of the simulated curves

(Figure 4) are shown as points. The solid curves were estimated from noiseless projections, and

the dotted curves were estimated from the third of 100 realizations of projections having Poisson

noise. The dashed curves in (b), (c), and (d) are the one-compartment kinetic �ts (Figure 2) to

the noisy curves. The �tted kinetic model parameters are listed in column (e) of Tables 1 and 2.


